If it's not what You are looking for type in the equation solver your own equation and let us solve it.
27x^2+100x-150=0
a = 27; b = 100; c = -150;
Δ = b2-4ac
Δ = 1002-4·27·(-150)
Δ = 26200
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{26200}=\sqrt{100*262}=\sqrt{100}*\sqrt{262}=10\sqrt{262}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(100)-10\sqrt{262}}{2*27}=\frac{-100-10\sqrt{262}}{54} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(100)+10\sqrt{262}}{2*27}=\frac{-100+10\sqrt{262}}{54} $
| 7k^2=343 | | 55x+2+56x=180 | | -2(6a-1)=-5/3(3a+15)6 | | 12+f=23 | | 3x+6(2x-3)=10x+5x-18 | | c^2-4c-9=0 | | x+x-2+x-2+3=30 | | 3(3n+7)=84 | | 1/1/2x=2/1/4 | | 0=1/3x+2 | | -x+5x=9+31 | | 1-2/a=-1 | | 3^(3x+2)=9^(2x) | | 30=-5(6n+6} | | u÷4+5=7 | | (6÷w)+3=6 | | 4=5+k/4 | | -9+5n=-29 | | 5x-15=28 | | X-3/4x+-4.5-4=0 | | d+6−2=5 | | 4/5x(9x-20)-3x=4/5x-6 | | v=50+9v-2 | | -7w=105 | | N+8=92-n | | 17-q=11 | | v=50=9v-2 | | 3/5x+3=-6 | | -84-x=-7x+72 | | -4+6y=20 | | 20=y=12 | | -10/10+x=-3 |